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DISCLAIMER 

 

© www.learn-in-depth.com 

All Rights Reserved 

 

In the DISCLAIMER section of your book, you can write something like this: 

 

Disclaimer: The information contained in this book is provided for educational and informational purposes 

only. The author has made every effort to ensure the accuracy and completeness of the information provided. 

However, the author, publisher, and any other parties involved in the creation, publication, or distribution of 

this book shall not be held responsible for any errors, inaccuracies, or omissions, or for any results obtained 

from the use of this information. 

 

Readers are encouraged to verify any information they intend to rely upon and consult with appropriate 

professionals to ensure the information is accurate and suitable for their specific needs. The author is not liable 

for any loss, damage, or other consequences arising from the use of the information contained in this book. 

 

This book is not intended to replace or substitute for professional advice, and the author disclaims any 

liability, loss, or risk incurred as a consequence, directly or indirectly, of the use and application of any of the 

contents of this book. 

 

This book contains information derived from various open-source websites, public resources, and references 

in the embedded systems field. The author has made every effort to acknowledge and cite these sources 

appropriately in the reference section at the end of the book. However, the author does not claim any 

ownership or responsibility for the original content from these sources. The purpose of including this 

information is to provide a comprehensive and consolidated resource for readers who are interested in 

learning and mastering embedded systems. Readers are encouraged to explore these references and sources 

for further information and to gain a deeper understanding of the subject matter. 

 

"Mastering Embedded Systems From Scratch" is your ultimate guide to becoming a 

professional embedded systems engineer. Curated from 24 authoritative references, 

this comprehensive book will fuel your passion and inspire success in the fast-paced 

world of embedded systems. Dive in and unleash your potential! 
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