

Mastering
Embedded System

From Scratch

First Edition

Keroles karam khalil

Be Professional in Embedded System

PAGE 2 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

DISCLAIMER

© www.learn-in-depth.com

All Rights Reserved

In the DISCLAIMER section of your book, you can write something like this:

Disclaimer: The information contained in this book is provided for educational and informational purposes

only. The author has made every effort to ensure the accuracy and completeness of the information provided.

However, the author, publisher, and any other parties involved in the creation, publication, or distribution of

this book shall not be held responsible for any errors, inaccuracies, or omissions, or for any results obtained

from the use of this information.

Readers are encouraged to verify any information they intend to rely upon and consult with appropriate

professionals to ensure the information is accurate and suitable for their specific needs. The author is not liable

for any loss, damage, or other consequences arising from the use of the information contained in this book.

This book is not intended to replace or substitute for professional advice, and the author disclaims any

liability, loss, or risk incurred as a consequence, directly or indirectly, of the use and application of any of the

contents of this book.

This book contains information derived from various open-source websites, public resources, and references

in the embedded systems field. The author has made every effort to acknowledge and cite these sources

appropriately in the reference section at the end of the book. However, the author does not claim any

ownership or responsibility for the original content from these sources. The purpose of including this

information is to provide a comprehensive and consolidated resource for readers who are interested in

learning and mastering embedded systems. Readers are encouraged to explore these references and sources

for further information and to gain a deeper understanding of the subject matter.

"Mastering Embedded Systems From Scratch" is your ultimate guide to becoming a

professional embedded systems engineer. Curated from 24 authoritative references,

this comprehensive book will fuel your passion and inspire success in the fast-paced

world of embedded systems. Dive in and unleash your potential!

PAGE 3 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CONTENTS

T A B L E O F C O N T E N T S

CONTENTS 3

PREFACE 26

OVERVIEW 26

ACKNOWLEDGMENTS 27

ABOUT THE AUTHOR 28

CHAPTER 1. INTRODUCTION TO EMBEDDED SYSTEM 31

ABSTRACT 31

EMBEDDED SYSTEM WHAT’S THAT ? 31

EMBEDDED SYSTEM CLASSIFICATION 32

HYPERVISORS 33

ADDRESS BINDING (TO BUILD EMBEDDED SW EXECUTABLE) 34

EXAMPLES FOR SOCS 35

EMBEDDED SYSTEM LEARNING CHEAT SHEET 38

VERSION CONTROL SYSTEMS (VCS) 39

WHAT IS GIT? 40

GIT CONCEPTS 40

CHECKOUT A REPOSITORY 43

WORKFLOW 43

PUSHING CHANGES 43

GITK 44

BRANCHING 44

UPDATE & MERGE 45

LOG 46

GITHUB 46

GIT COMMANDS CHEAT SHEET 48

CHAPTER 2. C PROGRAMMING 51

ABSTRACT 51

PAGE 4 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CH2.C - PART 1 : C-BASICS 52

WHY C, AND NOT ANOTHER LANGUAGE? 52

HISTORY 52

DEVELOPMENT ENVIRONMENTS 53

C - ENVIRONMENT SETUP 53

INSTALL MINGW GCC STEPS 54

VARIABLE NAME 55

COMMENTS 56

INTEGER VALUES 57

FLOATING-POINT TYPES 58

2′S COMPLEMENT 58

INTEGER AND FLOAT CONVERSIONS 60

TYPE CONVERSION IN C 62

HIERARCHY OF OPERATIONS 64

C PROGRAMMING INPUT OUTPUT (I/O): PRINTF() AND SCANF() 65

C FLOATS INPUT/OUTPUT 67

MATHEMATICAL AND LOGICAL EXPRESSIONS 72

IDENTIFIERS 74

C KEYWORDS 75

C FUNDAMENTALS SUMMARY 76

CH2.C - PART 2 : C-CONDITION & LOOP 77

CONTROLLING PROGRAM FLOW 77

CONDITIONS 77

INLINE CONDITION / CONDITIONAL OPERATORS 80

SWITCH STATEMENT 82

FOR STATEMENT 83

WHILE STATEMENT 87

DO…WHILE STATEMENT 88

BREAK STATEMENT 90

CONTINUE STATEMENT 91

CH2.C - PART 3 : ARRAY/STRING 94

C ARRAY 94

STRINGS IN C 100

ARRAY OF STRINGS 104

CH2.C - PART 4: FUNCTION/STORAGE CLASSES 112

DIFFERENCE BETWEEN VARIABLE DEFINITION AND DECLARATION 112

FUNCTIONS 112

THE COMPILER GIVES AN ERROR AT THE LINE PRINTWELCOME(); IN THE MAIN FUNCTION, THE ERROR

STATE THAT “THE FUNCTION PRINTWELCOME IS UNDEFINED”. WHICH MEANS THAT THE COMPILER

CANNOT LOCATE THE FUNCTION BEFORE THE MAIN, EVEN IF IT IS LOCATED AFTER THE MAIN? 114

PAGE 5 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

DIFFERENCE BETWEEN PASSING SINGLE VALUES AND ARRAYS 117

WHAT IS MEMORY LAYOUT OF C-PROGRAM ? 121

STORAGE CLASSES IN C 122

STORAGE CLASSES SUMMARY 135

CALLING MECHANISM 136

INLINE ASSEMBLY 141

CH2.C - PART 5: STRUCTURES/UNIONS/ENUM/MACROS 144

STRUCTURE IN C 144

ENUM IN C 165

UNION IN C 167

CH2.C - PART 6: MACROS/CONSTANT/#PRAGMA 173

C – PREPROCESSOR DIRECTIVES 173

MACRO IN C 176

__VA_ARGS__ 179

#UNDEF DIRECTIVE IN C 183

PREDEFINED MACROS 186

CONDITIONAL COMPILATION IN C 188

PRAGMA DIRECTIVE IN C O PRAGMA IS IMPLEMENTATION SPECIFIC DIRECTIVE I.E EACH PRAGMA

DIRECTIVE HAS DIFFERENT IMPLEMENTATION RULE AND USE . 192

TYPE QUALIFIER IN C 195

CONSTANT IN C 196

CH2.C - PART 7: POINTERS 202

WHAT ARE POINTERS? 202

WHY DO WE NEED POINTER? 203

POINTER SIZE 204

POINTER CASTING 204

POINTER ARITHMETIC 207

POINTER TO ARRAY 210

POINTER TO STRUCTURE 211

POINTERS AND FUNCTIONS 213

POINTER WITH UNKNOWN TYPE (VOID*) 218

MULTIPLE INDIRECTION: POINTER TO POINTER 221

NULL AND UNASSIGNED POINTERS 223

POINTER TO FUNCTION 227

POINTER TRICKS 230

OTHERS POINTERS TRICKS IN C 245

CHAPTER 2. C PROGRAMMING (ASSIGNMENTS) 248

PART 1 : C-BASICS ASSIGNMENT 1 248

PART 2 : C-CONDTION & LOOP ASSIGNMENT 250

PART 3 : ARRAY/STRING ASSIGNMENTS 254

PAGE 6 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

PART 4: FUNCTION/STORAGE CLASSES ASSIGNMENTS 256

PART 5: STRUCTURES/UNIONS/ENUM/MACROS ASSIGNMENTS 256

PART 7: POINTERS ASSIGNMENTS 259

CHAPTER 2. C PROGRAMMING (QUIZZES) 261

CHAPTER 3. EMBEDDED C 286

ABSTRACT 286

CH3 EMBEDDED C - PART1 287

TYPEDEF COMMAND 287

HEADER PROTECTION 291

C OPTIMIZATION 292

VOLATILE TYPE QUALIFIER 294

CH3. EMBEDDED C - PART2 301

BARE METAL EMBEDDED SW 301

COMPILATION PROCESS 305

CH3. EMBEDDED C - PART3 315

BOOTING SEQUENCE 315

RUNNING MODE 318

BOOTLOADER VS STARTUP 320

EMBEDDED C LAB1 326

WHAT IS QEMU ? 328

GDB DEBUGGER COMMANDS 354

DEBUGGING REMOTE EMBEDDED SW 356

CH3. EMBEDDED C - PART4 364

MAKEFILE TUTORIAL 364

CMAKE - BASIC USAGE 369

LAB2: LET US LEARN TOGETHER EVERY THING WITH AN EXAMPLE WRITE BAREMETAL SW ON 370

FUNCTIONAL ATTRIBUTE: WEAK AND ALIAS IN EMBEDDED C 380

CH3. EMBEDDED C - PART5 388

LAB3: LET US LEARN TOGETHER EVERY THING WITH AN EXAMPLE WRITE BAREMETAL SW

ON TM4C123 ARM CORTEXM4 388

DEBUGGING MECHANISM 398

DEBUGGING MECHANISM THROUGH DEBUG CIRCUIT 400

DEBUG TM4C123 BY OPENOCD GDBSERVER 402

DEBUG TM4C123 BY OPENOCD GDBSERVER WITH IDE (ECLIPSE) 405

DEBUG TM4C123 BY KEIL-UVISION 406

FAMOUS JTAG/SWD (EMULATORS/DEBUGGERS_ADAPTORS) 407

LAUTERBACH \ TRACE32 411

RENESAS E1/E2 DEBUGGER 416

PAGE 7 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CH3. EMBEDDED C - PART6 420

DYNAMIC ALLOCATION 420

WRITE A DYNAMIC ALLOCATION CODE IN EMBEDDED C (MODIFY LAB 2) 422

WHAT ARE THE UNDEFINED SYMBOLS _SBRK ? 424

C STANDARD LIBRARY 424

IMPLEMENT _SBRK TO SUPPORT MALLOC IN EMBEDDED C 426

LET US SUPPORT PRINTF IN EMBEDDED C 429

CHAPTER 4. DATA STRUCTURE/SW DESIGN 431

ABSTRACT 431

CH4. PART1 - DATA STRUCTURE FOR EMBEDDED SYSTEM 432

INTRODUCTION TO DATA STRUCTURES 432

LIFO BUFFER 434

CIRCULAR BUFFER & FIFOS 443

LINEAR VS NON-LINEAR DATA STRUCTURE 452

DATA STRUCTURE - LINKED LIST 452

DATA STRUCTURE - DOUBLY LINKED LIST 458

CH4. PART 2 - EMBEDDED SYSTEMS ARCHITECTING 475

STATE MACHINES IN C 475

DESIGNING EMBEDDED SYSTEMS 492

CH4. PART3 - SYSTEM EXPLORATION 495

UML FOR EMBEDDED SYSTEM 495

EMBEDDED SYSTEM ARCHITECTING/DESIGN SEQUENCE 499

UML: USE CASE DIAGRAM 504

UML: ACTIVITY DIAGRAM 505

UML: SEQUENCE DIAGRAM 507

SYSTEM DESIGN 508

STATE MACHINE - STATES AND TRANSITIONS 508

BLOCKS COMMUNICATION 510

PRESSURE CONTROLLER PROJECT 511

WINDOWS HOST MACHINE NATIVE TOOL CHAIN UTILIZATION USING ECLIPSE IDE 537

TESTING & SIMULATION 538

HARDWARE PROTEUS SIMULATION 542

MISRA-C RULES VIOLATION CHECKER 544

CHAPTER 5. MICROCONTROLLER FUNDAMENTALS 550

ABSTRACT 550

CH5. PART1- MCU FUNDAMENTALS 551

PAGE 8 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

MCU FUNDAMENTALS 551

DIFFERENCE BETWEEN IC, MPU, MCU, SOC AND ECU 551

ELECTRONIC CONTROL UNIT (ECU) 558

CACHE MEMORY 560

CACHE COHERENCE 562

FLOATING-POINT UNIT (FPU) 563

MEMORY PROTECTION UNIT (MPU) 564

MCU MEMORY TYPES 567

VON NEUMANN VS HARVARD AND MODIFIED HARVARD 575

PIPELINE TECHNIQUE 578

CISC VS RISC 580

CH5. PART2- MCU MEMORY SPACE 582

PORT-MAPPED I/O 582

MEMORY-MAPPED I/O 582

NAVIGATE “MEMORY MAP” FOR STM32 IN TRM 592

NAVIGATE “MEMORY MAP” FOR TM4C123 IN TRM 594

MCU BUS INTERFACES 600

UNDERSTANDING AMBA BUS ARCHITECTURE AND PROTOCOLS 601

BIT, BYTE, HALFWORD, WORD, DOUBLE-WORD AND NIBBLES 613

BIG AND LITTLE ENDIAN 614

CH5. PART3- MCU CLOCKS 616

MCU CLOCKING 616

MCU CLOCK SOURCES 621

UNDERSTANDING CLOCK TREE 623

RCC REGISTERS IN STM32F103C8T6 630

CH5. PART4- MCU INTERRUPTS 647

WHAT IS AN INTERRUPT? 647

INTERRUPT SERVICE ROUTINE 647

FUNCTIONAL ATTRIBUTE: WEAK AND ALIAS FOR ISR 651

SERVICING INTERRUPTS 651

INTERRUPT VECTOR TABLE 653

POLLING VS. INTERRUPT 654

INTERRUPT PROCESSING 655

WHAT IS INTERRUPT LATENCY? 656

SEQUENTIAL INTERRUPT PROCESSING VS NESTED INTERRUPT PROCESSING 656

TYPES OF INTERRUPTS 657

INTERRUPT CONTROLLER IC 659

WHAT IS INTERRUPT OVERLOAD? 671

CHAPTER 6. MCU ESSENTIAL PERIPHERALS 673

PAGE 9 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

ABSTRACT 673

CH6. PART1 - GPIO 674

WHAT ARE PERIPHERALS? 674

GPIO CONTROLLERS 676

GPIO INTERNAL CIRCUIT 680

GPIO OUTPUT SPEED: SLEW RATE 684

GPIO INPUT MODES: PULL UP AND PULL DOWN 685

HOW TO READ GPIO MODULE FROM TRM 687

CH6. PART2 - GPIO IOS/ALT 695

THINKING QUESTION 695

ALTERNATE FUNCTIONS (AF) FUNCTIONAL DESCRIPTION 698

DEEP DIVE INSIDE SOC TO SEE PA.0 CONFIGURED TO BE EXTERNAL INTERRUPT (BLUEPILL) 699

CH6. PART3 - GPIO/EXTI DRIVER 703

GPIO DRIVER FOR (STM32F103C8T6) 703

MCU DEVICE HEADER 703

GPIO DRIVER 706

EXTI DRIVER FOR (STM32F103C8T6) 711

CH6. PART4 - TIMERS 715

WHAT IS A TIMER ? 715

TIMER IN DEPTH 716

CASE STUDIES: CASE STUDY 1 718

TIMER INFRA STRUCTURE 719

ATMEGA 32 TIMER 0 MODES 720

TIMER INPUT CAPTURE MODE 720

STM32F103XX TIMERS 721

PWM (PULSE WIDTH MODULATION) 723

HOW DOES A SERVO MOTOR WORK? 724

DC MOTOR 725

REAL-TIME CLOCK (RTC) 726

WATCHDOG (WDOG) 727

THINKING QUESTIONS 729

CH6. PART5 - ADC 741

ADC INTRODUCTION 741

SIGNALS CONCEPT 742

MAJOR CHARACTERISTICS OF THE ADC 751

SIGNAL TO NOISE RATIO SNR 752

IN YOUR OPINION HOW THE ACCURACY OF AN ADC CAN BE IMPROVED ? 753

ADC TYPES 754

ADC MODE IN (STM32F103C8T6) 756

ADC CALIBRATION 759

PAGE 10 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CHAPTER 7. MCU INTERFACING 760

ABSTRACT 760

CH7. PART1- MCU IO ELECTRICAL CHARACTERISTICS 761

MCU IO ELECTRICAL CHARACTERISTICS 761

EXAMPLE: CONNECT TWO STM32F103C8X TOGETHER 772

CASE STUDY 2: TM4C123 773

CASE STUDY 3: ATMEGA32 775

CASE STUDY 4: ATMEGA32 CONNECTED WITH 3.3V SENSOR 777

INTERFACING MAIN CONCEPTS 779

CH7. PART2- UART 784

UART “UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER” 784

WIRE STANDARD CONJUGATION WITH USART PROTOCOL 790

USART CONTROLLER GENERAL CIRCUIT 793

USART BLOCK DIAGRAM ON STM32F103X 794

NRZ (NON-RETURN-TO-ZERO) 797

UART OVER SAMPLING MECHANISM 798

THREE DIFFERENT METHODS OF SENDING OR RECEIVING DATA VIA UART PORTS: 802

WRITE UART DRIVER (STM32F103C8T6) 805

UART DRIVER FOR (STM32F103C8T6) 809

CASE STUDY 1 WITH DEBUGGING : USING POLLING MECHANISM 817

CASE STUDY 2 WITH DEBUGGING : USING INTERRUPT MECHANISM 818

CH7. PART3- SPI PROTOCOL 820

SERIAL PERIPHERAL INTERFACE (SPI) 820

HOW SPI WORKS ? 823

SPI BUS CONFIGURATION 825

SPI WITH FLASH MEMORIES (CUSTOM PROTOCOL) 828

SPI BUS 3-WIRE 829

QUAD SPI 830

SPI CONTROLLER (READ FROM TRM AND WRITE A DRIVER) 832

SPI DRIVER FOR (STM32F103C8T6) 832

LAB1: SPI DEBUG/ANALYZE SPI MASTER 843

LAB2: TERMINAL1 <----> USART1 : MCU1 : (SPI1 MASTER) ---> (SPI2 SLAVE) :MCU2: USART2 --->

TERMINAL2 844

CH7. PART4- I2C PROTOCOL 846

WHAT IS I2C 846

I2C CHARACTERISTICS 846

I2C SPEED CATEGORIES 847

I2C PINS 848

I2C BUS DEFINITIONS 849

PAGE 11 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

START AND STOP CONDITIONS 850

HOW I2C WORK ? 850

I2C DATA SAMPLING 855

WHAT HAPPEN IF TWO MASTERS INITIATE START CONDITION AT THE SAME TIME OR HAVE MULTIPLE

SLAVE DEVICES THAT RESPOND TO A SINGLE ADDRESS? 860

I2C CLOCK STRETCHING 861

MULTIBYTE BURST WRITE/READ 862

I2C CLOCK SYNCHRONIZATION 863

HOW TO SELECT BETWEEN I2C AND SPI 864

I2C ADDRESSING 865

SENDING DATA TO 12C SLAVE VIA POLLING 866

RECEIVING DATA FROM 12C SLAVE VIA POLLING 868

TRANSFERRING DATA VIA DMA ON I2C MASTER 869

I2C PROGRAMMABLE TIMINGS 870

RISE TIME AND FALL TIME 871

DATA HOLD TIME 871

DATA SETUP TIME 872

MASTER CLOCK'S MINIMUM HIGH AND LOW TIME 872

SYSTEM MANAGEMENT BUS (SMBUS) 873

I2C CONTROLLER DRIVER IN STM32F103XX 874

LET US WRITE (HAL:E2PROMDRIVER AND MCAL:I2CDRIVER) TOGETHER 883

CHAPTER 8. SW TESTING 886

ABSTRACT 886

CH8. PART1-VERIFICATION AND VALIDATION 887

WHAT IS EMBEDDED SOFTWARE TESTING? 887

EMBEDDED SYSTEM SOFTWARE QUALITY IS MANDATORY 887

FIRST DEFINITION: ERRORS, FAULTS AND FAILURE 888

SECOND DEFINITION: TESTING 889

THIRD DEFINITION: VERIFICATION VS VALIDATION 890

SOFTWARE QUALITY CHARACTERISTICS 890

STATIC & DYNAMIC TESTING 891

QUALITY MANAGEMENT 892

QA VS QC 893

FALSE POSITIVE VS FALSE NEGATIVE 894

ROOT CAUSE ANALYSIS 895

TESTING VS DEBUGGING 895

SYSTEM ARCHITECTING/DESIGN SEQUENCE 896

TEST LEVELS 899

PAGE 12 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

REGRESSION TESTING 901

WHITE, GRAY AND BLACK BOX TESTING 901

FUNCTIONAL VS NON-FUNCTIONAL TESTING 902

WATERFALL MODEL IN SOFTWARE DEVELOPMENT LIFE CYCLE 904

SPIRAL MODEL IN SOFTWARE DEVELOPMENT LIFE CYCLE 905

V MODEL IN SDLC 906

CH8. PART2-TEST_CASE_DESIGN_TECHNIQUES 908

TEST CASE DESIGN 908

HOW TO WRITE TEST CASES? 908

TEST_CASE_DESIGN_TECHNIQUES 909

OPEN-SOURCE CODE COVERAGE TOOLS 920

CH8. PART3-AGILE SCRUM METHODOLOGY 922

AGILE SCRUM METHODOLOGY 922

SCRUM TEAM 922

ARTIFACTS IN AGILE SCRUM METHODOLOGY 923

MEETINGS IN AGILE SCRUM METHODOLOGY: 924

ATLASSIAN JIRA 925

CHAPTER 9. ARM FUNDAMENTALS 928

ABSTRACT 928

CH9.PART1-CORTEXM3/4 MODES/OPERATIONS/REGISTERS 929

DATA SIZE AND INSTRUCTION SET 929

MODES OF OPERATION AND EXECUTION ARM CORTEX M3/4 929

CORTEX-M REGISTERS 932

PROCESSOR REGISTERS 934

SWITCHING FROM USER TO PRIVILEGED ACCESS MODE 939

THUMB / ARM / THUMB2 ISA 940

ARM LAB1: ARM MODES 942

CH9.PART2- INLINEASSEMBLY 944

THE CORTEX-M4 INSTRUCTION SET 944

LAB: WRITE ASSEMBLY TO ACHIEVE THE CLOSER FUNCTIONALITY. 947

MOST COMMON INSTRUCTIONS 947

LOAD / STORE INSTRUCTIONS 948

INLINE FUNCTIONS 950

CH9.PART3 - CORTEXM RESETSEQUENCE 960

THE EXECUTION PROGRAM STATUS REGISTER (EPSR) PC & T ADDRESSING 965

3-STAGE INSTRUCTION PIPELINE 968

CH9. PART4 - STACK MEMORY 970

CORTEXM3/4 MEMORY MAP 970

PAGE 13 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CORTEXM3/4 STACK MEMORY 971

SHADOWED STACK POINTER 976

ARM PROCEDURE CALL STANDARD 980

CONTEXT SAVING ON STACK (EXCEPTION/ INTERRUPT) 989

MEMORY PROTECTION UNIT (MPU) 990

CH9. PART5 - EXCEPTIONS AND INTERRUPTS 993

EXCEPTION TYPES 994

CMSIS (CORTEX MICROCONTROLLER SOFTWARE INTERFACE STANDARD) 995

OVERVIEW OF INTERRUPT MANAGEMENT 999

HOW TO MAKE THE INTERRUPT REACH TO THE CPU 1002

CORTEX-M3/4 PERIPHERALS 1003

ACCEPTANCE OF EXCEPTION REQUEST 1006

CPU’S EXCEPTION PROCESSING 1007

CPU’S EXCEPTION PROCESSING IN DETAILS 1007

EXITING AN EXCEPTION HANDLER 1014

EXCEPTION ENTRANCE SEQUENCE 1016

CAN EXAMINE VECTOR TABLE WITH DEBUGGER ? 1017

INTERRUPT RESPONSE LATENCY 1018

MAXIMUM INTERRUPT RATE 1019

EXCEPTION HANDLING: TAIL CHAINING 1020

LATE ARRIVAL EXCEPTION BEHAVIOR 1022

POP PREEMPTION 1023

CH9. PART6 - SVC/PENDSV EXCEPTIONS 1025

ARM CORTEX-M SVC EXCEPTION 1025

EXECUTING SVC 1028

SVC INSTRUCTION 1028

SVC HANDLER 1029

EXTRACTION OF THE SVC SERVICE NUMBER IN ASSEMBLY 1032

“SVC_HANDLER” IS STANDARDIZED IN CMSIS 1033

PENDSV EXCEPTION AND CONTEXT SWITCHING IN ARM CORTEX-M 1036

CHAPTER 10. RTOS 1043

ABSTRACT 1043

CH10. PART1 - RTOS CONCEPTS 1045

HOW TO EXECUTE TWO FUNCTION AT THE SAME TIME ON THE BAREMETAL APPLICATION? 1045

WHAT IS AN OPERATING SYSTEM 1049

CONCURRENCY VERSUS PARALLELISM 1052

TASK SWITCHING LATENCY 1052

REAL TIME OS (RTOS) 1054

PAGE 14 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

SOFT/HARD REAL-TIME SYSTEMS 1055

DEFINITION OF REAL TIME EMBEDDED SYSTEMS 1056

KEY CHARACTERISTICS OF AN RTOS 1058

RTOS SCHEDULING CLASSIFICATION 1059

REAL-TIME SCHEDULING 1061

PREEMPTIVE SCHEDULING 1063

SCHEDULING ALGORITHMS IN TIME-SHARED SYSTEM 1064

SCHEDULING - PRIORITIES 1066

ADVANTAGES: 1067

DISADVANTAGES: 1067

ADVANTAGES: 1067

DISADVANTAGES: 1067

LINUX FOR REAL TIME APPLICATIONS 1069

FIVE REAL-TIME SCHEDULING CLASSES 1070

RATE MONTONIC SCHEDULING 1072

FOREGROUND/BACKGROUND SYSTEMS 1072

HANDLING AN INTERRUPT IN RTOS 1073

PROCESS OR TASK IN RTOS 1074

SCHEDULER CONCEPTS 1079

SHARED DATA BETWEEN TASKS IN FREERTOS 1080

TASK SYNCHRONIZATION 1086

REENTRANT VS. NON-REENTRANT FUNCTIONS 1087

SYNCHRONOUS VS ASYNCHRONOUS FUNCTIONS 1091

COMMON DESIGN PROBLEMS 1092

DIFFERENCE BETWEEN STARVATION AND DEADLOCK 1100

CH10. PART2 - CREATE YOUR OWN RTOS SCHEDULER 1102

THE OBJECTIVE 1102

PREREQUISITES 1103

UML DIAGRAMS FOR THE MYRTOS PROJECT: 1124

TASKS QUEUES/BUFFERS 1126

DEBUGGING SEQUENCE 1129

FUTURE WORK 1144

CHAPTER 11. AUTOMOTIVE PROTOCOLS 1145

ABSTRACT 1145

HERE IS A COMPARISON TABLE BETWEEN LIN, CAN, CAN FD, TTCAN, AND FLEXRAY: 1146

CH11. PART1 - CAN PROTOCOL 1147

IN-VEHICLE NETWORKS (IVN) 1147

WHY CAN BUS ? 1150

PAGE 15 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

ISO 11898 (CAN SPECIFICATION) 1151

CANBUS TIMELINE 1151

CANBUS PHYSICAL LAYER 1152

CAN “CONTROLLER AREA NETWORK“ SUMMARY 1154

CAN ERROR DETECTION AND FAULT CONFINEMENT 1171

BIT MONITORING 1177

BIT STUFFING 1177

CAN BUS WIRING 1178

INSTALL CANOE 16 DEMO VERSION 1183

CASE STUDY : (MONITOR CAN FRAMES) 1186

CH 11. PART2 - CAN-FD 1188

WHY THE NEED FOR CAN-FD? 1188

WHAT DOES CAN-FD BRING? 1188

CAN-FD FRAME FORMATS 1189

CAN-FD FRAME –ARBITRATION FIELD 1190

CANFD EXAMPLES 1190

CH 11. PART3 - TTCAN 1192

WHY WE NEED TIME-TRIGGERED CAN 1192

INTRODUCTION: 1192

FEATURES OF TTCAN: 1192

ARCHITECTURE OF TTCAN: 1192

BACKUP MASTERS ON TTCAN 1193

CONCLUSION: 1194

CH 11. PART4 - LIN 1195

LIN OVERVIEW 1195

INTRODUCTION: 1195

LIN PROTOCOL STACK: 1195

LIN BUS TOPOLOGY: 1196

EXAMPLE: 1196

CONCLUSION: 1197

CH 11. PART5 - FLEXRAY 1198

OVERVIEW: 1198

FLEXRAY FRAME: 1199

FLEXRAY NETWORK TOPOLOGY: 1199

FLEXRAY PROTOCOL FEATURES: 1199

FRAME FORMAT FIELDS FOR FLEXRAY 1200

THE COMMUNICATION CYCLE 1201

FLEXRAY APPLICATIONS: 1201

CONCLUSION: 1202

CH11. PART6 - AUTOMOTIVE ETHERNET 1203

PAGE 16 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

IEEE STANDARD 802.3 1203

NETWORK ARCHITECTURE LAYERS OSI : OSI OPEN SYSTEMS INTERCONNECT 1203

TCP/IP FIVE LAYER SOFTWARE MODEL TERMINOLOGY REFERENCE 1205

IFG (INTER FRAME GAP) 1206

ETHERNET ARCHITECTURE 1207

STM32F4 ETHERNET MAC 1209

ETHERNET II FRAME 1214

VIRTUAL LOCAL AREA NETWORKS (VLANS) 1216

EMBEDDED LINUX ETHERNET STACK 1216

AUTOMOTIVE ETHERNET (MOTIVATION) 1217

DATA RATE FOR MAIN AUTOMOTIVE NETWORKS 1219

WHY AUTOMOTIVE ETHERNET? 1219

AUTOMOTIVE ETHERNET 1219

AUTOMOTIVE PHYSICAL LAYER 10/1000MBPS 1221

AUTOMOTIVE ETHERNET PROTOCOLS 1221

WHAT IS TSN – IT BEGAN WITH AVB 1222

802.3BR – INTERSPERSING EXPRESS TRAFFIC (FRAME PREEMPTION) 1223

MAC MERGE SUBLAYER 1223

MFRAME FORMAT ELEMENTS 1225

AUTOMOTIVE ETHERNET STACK 1226

AUTOMOTIVE ETHERNET SWITCH 1227

ETHERNET MEDIA ACCESS CONTROLLER (MAC) ON SOC 1229

CHAPTER 12. INTRODUCTION TO AUTOSAR 1232

ABSTRACT 1232

CH12. PART1 - AUTOSAR SW LAYERS ARCHITECTURE 1235

AUTOSAR BACKGROUND 1235

WHAT IS THE MAIN OBJECTIVE OF AUTOSAR 1235

WHAT IS THE AUTOSAR STANDARD AND WHY IS IT CREATED? 1236

AUTOSAR STANDARD 1237

NEW TERMS IN AUTOSAR 1239

START WORKING WITH AUTOSAR 1239

AUTOSAR SOFTWARE LAYERS 1244

WHAT THE AUTOSAR BASIC SOFTWARE MODULE (BSW) RESPONSIBLE FOR ? 1247

COMMUNICATION BETWEEN LAYERS 1248

EXAMPLE: COMMUNICATION BETWEEN SWCS 1248

EXAMPLE CODE: SWC IMPLEMENTATION 1248

CAN COMMUNICATION STACK 1249

AUTOSAR MEMORY STACK 1253

PAGE 17 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

AUTOSAR DIAGNOSTIC STACK 1255

CONCLUSION 1256

CH12. PART2 - CONFIGURATION PARAMETERS 1257

AUTOSAR CONFIGURATION PARAMETERS CONCEPT 1258

CONFIGURATION CLASSES IN AUTOSAR 1259

CH12. PART 3 - ASW LAYER CONCEPTS 1264

USE CASE ‘PEDAL MANAGEMENT’ VIEW FOR ONE ECU 1264

USE CASE ‘PEDAL MANAGEMENT’ VIEW FOR TWO ECUS 1264

USE CASE ‘FRONT-LIGHT MANAGEMENT’ IN AUTOSAR 1264

AUTOSAR SW “SYSTEM DESIGN PROCESS” 1265

DESIGN SEQUENCE USING AUTOSAR METHODOLOGY 1266

INTRA- AND INTER-ECU COMMUNICATION 1270

IOC (INTER OS COMMUNICATION) 1272

AUTOSAR SWC TEMPLATE 1274

AUTOSAR SWC (IMPLEMENTATION SEQUENCE) 1277

CH12. PART 4 -ASW_SWCS TYPES 1278

APPLICATION SOFTWARE COMPONENT 1278

SERVICE SOFTWARE COMPONENT 1279

NVBLOCKSWCOMPONENT 1280

COMPLEX DRIVER SOFTWARE COMPONENT 1282

SENSORACTUATOR SOFTWARE COMPONENT 1283

ECU ABSTRACTION SWC 1283

PARAMETER SOFTWARE COMPONENT 1286

SERVICEPROXY SOFTWARE COMPONENT 1286

COMPOSITION SOFTWARE COMPONENT 1287

SOFTWARE COMPONENTS ARCHITECTURE CASE STUDY 1289

CH12. PART 5 -ASW PORTS AND INTERFACES 1291

INTRODUCTION 1291

PORTS 1291

INTERFACES TYPES 1291

SENDER RECEIVER INTERFACE 1293

RTE WRITE/READ APIS WHICH IS USED BY SENDER RECEIVER INTERFACE 1301

RTE_WRITE 1302

RTE_READ 1302

EXAMPLE 1302

SENDER-RECIEVER IMPLICIT VS EXPLICIT 1304

AUTOSAR RTE APIS FOR THE VARIOUS SEND AND RECEIVE COMMUNICATION MODES 1305

CLIENT-SERVER 1306

CLIENT SERVER INTERFACE ARXML LAB 1310

LET US APPLY THE PORTS AND INTERFACES ON THE EABS ARCHITECTURE 1314

PAGE 18 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CH12. PART 6 -ASW COMPOSITION AND CONNECTORS 1316

COMPOSITIONS 1316

COMPOSITION AND CONNECTORS 1318

COMPOSITION-TYPE 1319

ASSEMBLY CONNECTORS 1320

CONNECTOR PROTOTYPES 1322

FLATTENING OF A HIERARCHIC SOFTWARE COMPOSITION 1324

PRACTICAL LAB (COMPOSITION) 1324

CH12. PART 7 -ASW RUNNABLES 1328

RUNNABLE ENTITIES 1328

APPLICATION PARTITIONING ON THE TARGETED MULTI-CORE PLATFORM 1331

RUNNABLE ENTITIES IMPLEMENTATION 1332

CASE STUDY 1 1334

CH12. PART 8 -ASW RTE EVENTS 1339

RTE EVENTS 1339

PRACTICAL LAB 1341

EXCLUSIVE AREAS 1345

CH12. PART 9 -RTE LAYER 1347

RUNTIME ENVIRONMENT (RTE) 1347

RTE GENERATOR 1349

RTE CONFIGURATION (EVENT TO TASK MAPPING) 1354

CH12. PART10 - AUTOSAR TYPES AND DATA CONVERSION 1357

APPLICATION DATA TYPES 1357

SWBASETYPES 1360

IMPLEMENTATION DATA TYPES 1362

LET US UNDERSTAND PLATFORMTYPES.XML 1363

CH12. PART11 - ASWL PROJECT 1365

DOORLOCK INDICATOR 1365

DOORLOCK INDICATOR AUTOSAR ASWL PROJECT 1365

NON-AUTOSAR IMPLEMENTATION 1366

AUTOSAR IMPLEMENTATION 1367

CH12. PART12 - AUTOSAR OS (OSEK-VDX STANDARED) 1376

AUTOSAR OS 1376

OSEK/VDX OVERVIEW 1377

OSEK SPECIFICATIONS 1378

OSEK OS + OIL APPLICATION 1380

TASKS IN OSEK 1382

OSEK SCHEDULING POLICY 1383

PROCESSING LEVELS 1384

TASKS’ SERVICES 1385

PAGE 19 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

TASKS’ SYNCHRONIZATION 1394

OS EVENTS 1394

EVENTS SERVICES 1395

COUNTERS 1405

DEFINING A COUNTER IN OIL 1406

USING A COUNTER IN C 1406

ALARMS 1407

DEFINING AN ALARM IN OIL 1408

USING AN ALARM IN C 1408

LAB5 (PERIODIC TASK BY ALARM) 1411

SHARED RESOURCES 1413

TASKS GROUP 1415

LAB6: RESOURCES (EXPECT WHAT THE OUTPUT AND DRAW THE TASK TIMELINE) 1416

CONFORMANCE CLASSES (CCS) 1422

HOOK ROUTINES 1423

LEVELS OF ERROR 1427

“RES_SCHEDULER” RESOURCE 1428

CHAPTER 13. INTRODUCTION TO EMBEDDED LINUX 1432

ABSTRACT 1432

CH13. PART1 - LINUX HISTORY/MEMORY CONCEPTS 1433

HISTORICAL BACKGROUND 1433

TERMINOLOGIES 1436

LINUX VERSION HISTORY 1436

LINUX KERNEL COMPONENTS 1437

DEFINE, LINKING AND ADDRESS BINDING 1438

MEMORY MANAGEMENT CONCEPTS 1440

MEMORY MANAGEMENT UNIT (MMU) 1444

FRAGMENTATION 1447

CH13. PART2 - VIRTUAL MEMORY UPON THE PAGING TECHNIQUES 1450

DIFFERENCE BETWEEN CONTIGUOUS AND NONCONTIGUOUS MEMORY ALLOCATION 1450

PAGING 1452

SO WHAT THE ADVANTAGES OF PAGING … ? 1457

SHARED PAGES 1457

T.L.B (TRANSLATION LOOK-ASIDE BUFFER) 1459

MULTI-LEVEL PAGE TABLE 1464

VIRTUAL MEMORY UPON THE PAGING TECHNIQUES. 1471

THRASHING 1485

SUMMARY 1487

PAGE 20 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

CH13. PART3 - KERNEL MODULES/PROCESS CONECPTS 1488

BASIC I/O CONCEPTS 1488

COMPARISON - MEMORY-MAPPED VS PORT-MAPPED 1496

DMA DIRECT MEMORY ACCESS 1496

POLLING VS. INTERRUPT 1497

INTERRUPT 1497

KERNEL MODULES/PROCESS MANAGEMENT IN LINUX 1498

PROCESS MANAGEMENT IN LINUX PROCESS DESCRIPTOR 1499

A CIRCULAR DOUBLY LINKED LIST CALLED THE TASK LIST FOR THREE ELEMENTS 1502

PROCESSES VS. TASKS 1503

LINUX THREADS 1505

THE LINUX SCHEDULER 1508

LINUX MEMORY MANAGEMENT 1511

BUDDY SYSTEM 1513

ELF IMAGE 1514

MM_STRUCT FOR VIRTUAL MEMORY 1515

LINUX FILESYSTEM STRUCTURE 1518

OS: ABSTRACTION PROVIDER 1519

SYSTEM CALLS 1520

POSIX HISTORY 1521

PROCESSES VS THREADS 1522

PROCESS HIERARCHY 1524

CH13. PART3 - KERNEL MODULES/PROCESS CONECPTS 1531

BASIC I/O CONCEPTS 1531

COMPARISON - MEMORY-MAPPED VS PORT-MAPPED 1539

DMA DIRECT MEMORY ACCESS 1540

POLLING VS. INTERRUPT 1541

INTERRUPT 1541

KERNEL MODULES/PROCESS MANAGEMENT IN LINUX 1542

PROCESS MANAGEMENT IN LINUX PROCESS DESCRIPTOR 1543

A CIRCULAR DOUBLY LINKED LIST CALLED THE TASK LIST FOR THREE ELEMENTS 1546

PROCESSES VS. TASKS 1547

LINUX THREADS 1549

THE LINUX SCHEDULER 1552

LINUX MEMORY MANAGEMENT 1555

BUDDY SYSTEM 1557

ELF IMAGE 1558

MM_STRUCT FOR VIRTUAL MEMORY 1559

LINUX FILESYSTEM STRUCTURE 1562

OS: ABSTRACTION PROVIDER 1563

PAGE 21 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

SYSTEM CALLS 1564

POSIX HISTORY 1565

PROCESSES VS THREADS 1566

PROCESS HIERARCHY 1568

CH13. PART4 - PTHREAD/LINUX COMMAND 1576

LINUX ALARM 1576

READ/WRITE DIRECTORIES 1580

OPEN() /READ()/WRITE() FILES 1584

LINUX HEADERS 1588

JOINABLE AND DETACHED THREADS 1590

DETACHED THREADS 1592

PTHREAD MUTEXES 1597

SOCKET PROGRAMMING 1603

LINUX COMMAND LINE INTERFACE CLI 1607

WHAT IS A FILE ? 1608

BASICS LINUX COMMANDS 1612

WILDCARDS IN LINUX COMMAND LINE INTERFACE 1620

LINUX HELP COMMANDS 1621

COMPOSITE COMMANDS 1625

I/O REDIRECTION WITH FILES 1628

COMMON DEVICES FOR REDIRECTION 1629

SHELL SCRIPT 1631

SEARCHING TEXT (GREP COMMAND) 1632

COMPARING TEXT FILES (DIFF COMMAND) 1632

HOW TO READ DIFF OUTPUT 1633

WHAT IS PATCH? 1634

CH13. PART5 - CROSS-COMPILING TOOLCHAINS 1637

TOOL-CHAIN 1637

TOOLCHAIN COMPONENTS 1639

CREATING A STATIC LIBRARY (AR COMMAND) EXAMPLE 1646

SHARED OBJECT 1648

KERNEL HEADERS 1650

GNU CROSS-PLATFORM DEVELOPMENT TOOLCHAIN 1652

USING THE TOOLCHAIN IN MAKEFILE 1653

CH13. PART6 - LINUX BOOTLOADER 1655

LINUX BOOTLOADER: AN OVERVIEW 1655

ROLE OF A BOOTLOADER 1655

3 PHASES BOOT SEQUENCE INSIDE BOOTLOADERS 1656

BOOTING SEQUENCE EXAMPLES 1660

GENERIC BOOTLOADERS FOR EMBEDDED CPUS 1661

PAGE 22 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

THE U-BOOT BOOTLOADER 1662

LAB1: BUILD/RUN U-BOOT FOR VEXPRESS_CA9 SOC 1663

LAB2: RUN THE TEST APPLICATION ON TOP OF U-BOOT 1673

LAB3: RUN THE TEST APPLICATION ON TOP OF U-BOOT THROUGH TFTP SERVER 1675

U-BOOT ENVIRONMENT VARIABLES 1678

LAB4:CREATE TWO ENV. (KS_BOOT_SD AND KS_BOOT_TFTP)AND SAVE THEM ON THE SDCARD 1687

LAB5:MAKE THE TFTP AUTOMATICALLY RUN, IF IT IS FAILED THEN BOOT FROM SDCARD AUTOMATICALLY.

 1688

CREATING A PRE-BUILT USER ENVIRONMENT 1689

LAB6:REVERSE THE ORDER IN LAB5 BY BLOB FILE 1689

LAB7:BUILD/RUN UBOOT FOR RASPBERRY PI2 1690

LAB8: BUILD/RUN UBOOT FOR BEAGLEBONE BLACK 1695

LAB9: DEBUG THE U-BOOT CODE 1698

PORT U-BOOT TO A NEW BOARD (BASICS) 1701

CH13. PART7 - LINUX KERNEL BASICS 1707

LINUX KERNEL KEY FEATURES 1707

LINUX KERNEL MAIN ROLES 1709

LINUX KERNEL SCI (SYSTEM CALL INTERFACE) 1710

PSEUDO FILESYSTEMS 1711

LINUX VS RTOS (ARCHITECTURE) 1712

INSIDE THE LINUX KERNEL 1712

HARDWARE ABSTRACTION LAYER (HAL) 1714

SCHEDULER 1714

FILE SYSTEM 1715

IO SUBSYSTEM 1716

NETWORKING SUBSYSTEMS 1717

LINUX USER SPACE 1718

KERNEL SOURCES 1719

BUILDING THE LINUX KERNEL 1720

KERNEL OPTION DEPENDENCIES 1725

LAB1:BUILDNG/RUNNING LINUX KERNEL ON VEXPRESS A9 1725

LAB2: BUILD/RUN LINUX ON RPI2 1728

DEVICE TREES 1731

LET US TRY TO WRITE A DEVICE TREE FROM SCRATCH TO SAMPLE MACHINE 1736

LINUX START-UP SEQUENCE 1749

MOUNTING ROOT FILE SYSTEM 1764

USER SPACE INITIALIZATION 1765

CH13. PART8 - ROOT FILE SYSTEM 1768

ROOT FILE SYSTEM 1768

MOUNTING AND UNMOUNTING A FILE SYSTEM 1769

PAGE 23 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

ROOT FILESYSTEM MOUNTED BY THE KERNEL 1770

LOCATION OF THE ROOT FILESYSTEM 1771

FILE SYSTEM CONTENTS 1772

HOW TO CREATE A MINIMAL ROOT FILESYSTEM ? 1779

BUSYBOX INIT 1781

FILE SYSTEM TYPES 1785

BUILD ROOT 1786

LAB1: CREATE YOUR OWN ROOTFS BY BUILDROOT TO BE RUN ON VEXPRESS CORTEXA9 1788

KERNEL CONFIGURATION EXAMPLES (APPENDIX) 1796

CHAPTER 14. ADVANCED TOPICS 1805

ABSTRACT 1805

CH14. PART1- ADAPTIVE AUTOSAR 1806

LIST OF DEFINITIONS 1806

OVERVIEW 1806

INTRODUCTION 1806

CLASSIC AUTOSAR VS ADAPTIVE AUTOSAR 1806

ADAPTIVE PLATFORM ARCHITECTURE 1807

EXECUTION MANAGEMENT (EM) 1808

EXECUTABLES IN ADAPTIVE AUTOSAR 1810

OVERALL STARTUP SEQUENCE 1812

MACHINE MANIFEST AND EXECUTION MANIFEST IN ADAPTIVE AUTOSAR 1814

PROCESS LIFECYCLE MANAGEMENT 1819

EXECUTION MANAGEMENT STARTUP SEQUENCE 1821

STATE MANAGEMENT 1822

MACHINE STATE 1824

STATE DEPENDENT PROCESS CONTROL 1828

INTERACTION BETWEEN STATES 1830

UPDATE AND CONFIGURATION MANAGER (UCM) 1832

SOFTWARE PACKAGE STRUCTURE 1835

CRYPTO STACK 1838

TRANSFERRING SOFTWARE PACKAGES 1840

PACKAGEMANAGERSTATUS 1841

SOFTWARE CLUSTER STATE DIAGRAM 1841

UCM MASTER 1843

CH14. PART2- INTRODUCTION TO ROS 1846

WHAT IS ROS? 1846

ROS MAIN FEATURES 1847

ROS MULTI-COMMUNICATION 1848

PAGE 24 OF 1884
Mastering Embedded System from Scratch

Copyright © 2023 – Keroles Khalil, eng.keroles.karam@gmail.com

COMPONENTS OF ROS 1849

ROS ECOSYSTEM 1850

ROS PROJECTS EXAMPLES 1851

ROS CORE CONCEPTS 1852

ROS DISTRIBUTION RELEASES 1856

ROS SUPPORTED PLATFORMS 1858

ROS INSTALLATION 1858

RUNNING TURTLESIM_NODE IN THE TURTLESIM PACKAGE 1860

ROSRUN RQT_GRAPH RQT_GRAPH 1862

RUNNING THE MASTER 1862

ROS TCP 1865

ROS SEARCHING PACKAGES 1866

ROS FOR EMBEDDED SYSTEM 1868

GAZEBO AND RVIZ 1869

CREATING TWO NODES: A TALKER NODE AND A LISTENER NODE 1872

ROS UTILITIES 1874

REFERENCES 1878

CONCLUSION 1883

	Contents

